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determined for these orientations, Results for other cylinder
orientations were presented for several conditions. The
accuracy of the approximate expressions was found to be
quite good for both pure # and pure ¢ rotations. Combined
rotations were not represented as accurately.
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NOMENCLATURE
C L R.(1), coefficient used in equations {4} and (5);
H, = hr/k, Biot number;

h, heat transfer coefficient for externgl ambient;
ke, heat transfer coefficient for flow inside the tube;
k, thermal conductivity of the fluid;

X, = i.,jé»;

Nu = 2r,h /k, Nusselt number;

Pr = v/a, Prandil number;

r, = r'/r,, dimensionless radial coordinate;
r, dimensional radial coordinate;

T inside radius of the tube;

Re, = 2r, U,/v, Reynolds number;

Ty, T, inlet and ambient temperatures respectively ;
Um, mean velocity;

z, dimensionless axial coordinate, 2z'/r, RePr;
z, axial coordinate.

Greek symbols

8, ={T-T_ W(T,~T,) dimensionless tempera-
ture;
Ao eigenvalue,
INTRODUCTION

THE GRAETZ problem for laminar flow inside a circular tube
subjected to the boundary condition of the third kind at the
tube wall is encountered in numerous engineering appli-
cations and has been studied by few investigators [1, 2]. For
the analysis of such problems, the local Nusselt numberisa

quantity of practical interest and its determination requires a
knowledge of the eigenvalues and the eigenfunctions for the
problem. Hsu [ 2] solved such an eigenvalue problem numeri-
cally and also presented some asymptotic expressions for the
cigenvalues and the coefficients. Here we present highly
accurate analytic expressions for the determination of the
cigenvalues and the coefficients that are applicable over the
entire range of the Biot number from zero to infinity.

ANALYSIS

We consider thermally developing laminar flow inside a
circular tube with fully developed velocity profile and sub-
jected to the boundary condition of the third kind at the tube
wall. For a constant property, incompressible fluid with no
heat generation and neglecting the viscous energy dissipation,
the mathematical formulation of this heat transfer problem is
given in the dimensionless form as

J8(r, 18/ a8
s:rﬁ:__(h), O<rsl z>0(la)
bz ror\ or
26(0, 2}
or

A1 ~rY

=0, z>0 {1b)

+ HO(1,z)=0, z>0

80(1 z) (1c)
r

A(r, 0} =1,
The solution of this heat transfer problem is given by

0<rx<l. (1d)

B(r,z) = i C R {rje" "2 @)
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where A, and R,(r) are the eigenvalues and the eigenfunctions
of the following eigenvalue problem

1 d d_R 2 — 2 _
;$<rdr>+i(l r)Rr)=0, 0<r<l1 (3a)
dR(0)
i 0, (3b)
dr(t) + HR(1) =0. (3¢c)

r

It can be readily shown that the local Nusselt number, Nu, is
given by

2 Y CR(1)e He2

2r,h, -
Nu, = k =— 4:'_0 1 . 4
— ——|C,R (1)~ 4=
n§0<lr“: H) " ( )

For the case of constant wall heat flux, g,, the boundary
condition (1c¢) in the above heat transfer problem should be
modified accordingly; but the eigenvalue problem (3) is
applicable by setting H = 0. The local Nusselt number for the
case of constant wall heat flux takes the form

2roh, 1
T k11 E .
—+-=Y C,R,(1)e”*=22
48 2 X S

Clearly, the local Nusselt number can readily be computed
from equations (4) and (5) if the eigenvalues 4, and the
coefficients C, R, (1) are available for a given value of the Biot
number, H, including the well known special case of H = 0.
However, one needs to solve the eigenvalue problem (3) to
determine the eigenvalues and the eigenfunctions. Although

)

Nu

n=1

737

2n

=K - —, (7c)
G =1 3
n

& =nK —54 (7d)

For the special case of H — oo (ie. isothermal wall),
equation (7b) reduces to (1/w) — 0, and for higher values of
K’s equation (7c) is approximated by ¢, ~ nn and equation
(7a) simplifies to

2 1
K =n+-+—[01237871 + Bln(nK)] forH— c. (8)
3 2K
The coefficients C,R,(1) appearing in equations (4) and (5)

can be determined from

1 .
R[0.1237871 + BlIn(nK)] cos e, — sin g

C.R,(1) = Kf/3 5 b
Ccos e, + wcose; + R + K2
for H<10 (9a)
where
B ={—0.1945227 + Bln(nK)](sin &, + wsin &)

+04244131sins, (9b)
D = {—f + 3[0.1237871 + Bln (nK)]} (cos &, + wcos &)
— 3[0.1237871 + BIn (nK)] cose,, (9c)
— 0.27499 forH=0
- o ©d)
+027499H for H#0

and from

1
(sin¢; — asing) — K [0.1237871 + In (nK)] (cos e, — « cos &)

C,R(1)=—
(1) X

B D

COs€; + W COS g +Z(—+m
73

for H>10 (10a)

such problems can be solved numerically [2], the de-
termination of the higher eigenvalues by purely numerical
scheme becomes very difficult. Therefore, some asymptotic
expressions have also been presented in [2].

Here we present highly accurate asymptotic expressions for
the determination of the eigenvalues, 4,, and the coefficients,
C,R, (1), which are valid over the entire range of Biot number.
We used the matched asymptotic expansion technique to
obtain the solutions. Such a technique has been used
previously by, for example, Shibani and Ozigik [3] to develop
asymptotic expressions for the eigenvalues associated with
the thermal entry region heat transfer subjected to the
boundary condition of the first kind.

The eigenvalues A, can be determined from

A, =4K 6)
where K is the solution of the transcendental equation
1 low-—1
K=n+-{1+-———
2 Jo+1
(-1
2nK

WCOSEy + COS &
+ —-1——1:', (Ta)

[0.1237871 + BIn(zK)] [
+1

H-05
© = 04319535~ ==, (7b)

where

0.2159767
o= K2R

and B and D are defined by equations (9b) and (9c)
respectively.

In the foregoing relations, the values of § are determined by
equating the last (i.e. 12th) exact eigenvalue or the coefficient,
C,R,(1), with the asymptotic ones. We present in Table 1 the
values of B, for different values of H, determined by equating
the eigenvalues for lower values of H’s (ie. H < 10), and
equating the coefficients for the higher values of H (i.e. H
= 10). This procedure yielded better results.

In equations (9d) and (10a) one can even neglect the term in
the denominator that contains (1/K?2) with little effect in the

(10b)

results. Table 1. Values of g
H 8 H B
0 — 0.026597 5 — 0.200748
0.1 — 0.039567 10 — 0.085227
0.5 — 0.082274 50 — 0.067512
1.0 — 0.124408 100 — 0.055986
20 —0.179048
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RESULTS

To illustrate the accuracy of the foregoing expressions for
the determination of the eigenvalues 4, and the coefficients,
C,R,(1), we present in Table 2 a comparison of the results
obtained from our asymptotic expressions (6), (9} and (10),
with those obtained from the exact solution of the eigenvalue
problem (3) by employing the procedure described in [4].
Also included in this table are the results calculated from the
asymptotic expressions given by Hsu [2] and [$] for the
boundary conditions of the third and second kind at the wall.
Clearly, the analytical expressions given in this paper can
predict the eigenvalues and the coefficients over the entire
spectrum of eigenvalues for all values of the Biot number very

close to the exact results.
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Table 2. The eigenvalues and coefficients

A C R (1)
H n Exact Present Hsu [5] Exact Present Hsu [51]
[¢] 1 5.06750| 4.97681 5.33333 -0.19872 |~0,21091 |-0.14748
2 9.15761 | 9.12198 9.33333 -0.06926 | ~0.07034 ]-0.05803
3 [13.19722113.17660 |13.33333 ~-0.03652 [~D.03674_ |-0.03203
4 117.22021|17.20631 |17,33333 -0.02301 |-0.02306_|-0.02068
5 {21.23550}21.22533 }121.33333 -0.01603 | -0.01604 |-0.01463
6 125.24652125.23866 | 25.33333 -0.01181 |~-0.01190 |-0.01089
7 128.25490129,24861 |29,33333 -0.00825 | ~0.00924 [-0,00861
8 133.26151 ]33.25635 |33.33333 -0.00743 | -0.00741 |-0.00695
9 137.26689 (37.26256 |37.33333 -0.00612 | -0.00611 |-0.00576
10 141.27135)41.26768 |41.33333 -0.00514 | -0.00513 |-0.00486
11 [45.27510 |45.27199 |45.33333 ~-0.00439 |-0.00438 |-0.00417
12 149.27847]49.27565 |49.33333 -0.00380 | ~0.00379 |-0.00362
Ay Can(l)

H n Exact Present Hsu {2] Exact Present Hsu [2]
0.1 0 .61834 . 73760 1.42412 0.95553 0.49904 1 0.11708
1 5.11687| 5.14232 5.37178 0.01881 | 0.01848 | 0.01388
2 | 9.18892] 9.19991 9.36003 0.00673 | 0.00664 | 0.00562
3 {13.22109}13,22705 113.35445 0.00358 | 0.00354 | 0.00313
4 117.23988(17.24344 {17.35109 0.00226 0.00224 | 0.00203
5 [21.25241 [21.25465 {21,34882 0,00158 0.00157 0.00144
6 |25.26146 125.26288 | 25.34715 0.00117 | 0.00117 | 0.00108
7 |29.26834 [29.26924 | 29.34587 0.00091 0.00091 0.00085

8 [33.27379 |33.27432 133.34485 0.00073 0.00073 0.00069

9 37.27824 |37.27850 |37.34401 0.00060 | 0.00060 | 0.00057

10 141.28181 141.28201 141.34332 $.00051 0.00051 0.00048

11 145.28502 [45.28500 145.34275 ¢.00043 0.00043 0.00041
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Table 2 {continued)

An Can(l)
H 3 Exact Present Hsu {2} Exact Present Hsu [2}
1.0 1] 1.64185] 1.79492 1.87832 5.66034 0.47276 G. 33502
1 5.47831] 5.50623 5.64969 $.11949 0,11149 0.08809
2 9.43597| ©.44593 | 9.56830 0.05111 0,04904 0.04223
3 {13.41524{13,.41973 }{13.52486 0.029215 0.02826 0.02524
4 117.,40259117.40482 117.49722 0.01817 0.01868 0.01705
5 121,39392121.39507 121.47784 0.01372 0,01341 0.01241
6 125.38754 |25,38812 125.46336 0.01038 0.01018 0.00951
7 129.38261 {29. 38289 129,45206 0.00818 0.00804 0.00787
8 133.37868133.37878 133.44285 0.00664 0.00653 0.00619
O I37.37544137.37546 137.43541 0.00552 0.00544 0.008817
10 141.372701{41,.37271 141.42905 0.00487 0.00461 0.00440
11 [45.37039 |45.37038 [45.42360 0.00402 0.00396 0.00379
10 [\ 2.51675 | 2,52544 2.49587 0.13764 0,12182 0.11972
1 £.36480 | 6,33044 6.37146 0.08428 0.080490 0.07528
2 110.27069 [10,23724 110.28502 0.006218 | 0,06001 0.05631
3 114.20020 [14.127171 [14.21802 | 0.04925 ]0.04778 [0.04501
4 118.14366(18.12051 118.16339 0.04057 0.03954 0.03735
5 122.09662122.07846 122.11748 0.03431 0.03358 0.03177
6 125.05653(26,04285 | 26.07809 $.02858 0.02908 §.02751
7 130.02178130,01205 | 30.04373 0.023585 0.02552 0.024186
8 133.99124133.98500 {134.01340 0.02287 0,08267 0.02145
9 137.96411[37,96005 |37.98633 0.02042 0,02032 0.01922
10 141.83876141.830835 141.96199 0.01839 Q. 01837 0.01735
11 145.91780145.81978 | 45.93093 0.01667 0.01871 0.01578
100 0 2.68427 ( 2.71850 2.64745 0.01488 0.01370 0.013686
1 6.64321) 6,63641 6.63149 0.01064 ©.01038 0.01042
2 110.62493110.61094 110.61882 0.008924 0.00881 0.00883
3 114.61181 114.5948]1 114.80780 5.00794 0.00784 0,00785
4 118.60043 |18.58205 118.59785 $.00724 0.007186 0.00717
5 122.59052 128.57103 {122.58868 0.008672 0.00665 0.008665
6 126.58147 126.56111 126.58012 2.00631 0,00624 0.00624
7 130.57301 {30,585196 130.57207 0.00597 0, 00530 0.00590
8 |34.56508 [34,54341 |34.56441 0.00568 0, 00562 0.00562
9 138.55756 {38.53534 138.55710 0.00543 G.00537 ¢.00537
10 }42.55040 |42.528768 142.55009 0.00521 0,00515 0.00515
11 §46.54349 146,52036 [46.543358 0.00502 0,00498 0.00498




