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NOMENCLATURE 

CnRm(lj, coeflicient used in equations (4) and (5); 
H, = hr.&, Biot number ; 
h, heat transfer coeI&ient for external ambient; 

ks heat transfer coe%cient for flow inside the tube ; 
k. thermal conductivity of the fluid: 

f-f%, 
Pr, 

::, 
r,, 
Re, 
To, T,, 
Urn, 
2. 

2, 

= &/4; 
= %&8,/k, Nussett number ; 
= v/a, Prandtt number ; 
= f/r,, dimensionless radial coordinate; 
dimensional radial caordinate; 
inside radius of the tube; 
= 2r, U,,,/v, Reynolds number; 
inlet and ambient temperatures respectively ; 
mean velocity ; 
dimensionless axial coordinate, Zz’/r,RePr; 
axial coordinate. 

Greek symbols 
B, =(T- T,)/(T, - T,), dimensionless tempera- 

ture; 3 
4s eigenvatue. 

THE GRAETZ problem for taminar flow inside a circular tube 
subjected to the boundary condition of the third kind at the 
tube wall is encountered in numerous engineering appli- 
cations and has been studied by few investigators [I, 23. For 
the analysis of such problems, the local Nusselt number is a 

quantity ofpracrical interest and its determination requires a 
knowledge af the eigenvatues and the eigenfunctions far the 
problem. Hsu [2] solved such an eigenvalue problem numeri- 
cally and also presented some asymptotic expressions for the 
eigenvalues and the coefficients. Rere we present big& 
accurate analytic expressions for the de~rfflina~~on of the 
eigenvalues and the coeftieients that are applicable over the 
entire range of the Biot number from zero to in&&y. 

ANALYSIS 

We consider thermally developing taminar flow inside a 
circular tube with fully developed velocity profile and sub- 
jected to the boundary condition of the third kind at the tube 
watt. For a constant property, incompressible fluid with no 
heat generation and neglecting theviscous energy dissipation, 
the mathematical formulation of this heat transfer problem is 
given in the dimensionless form as 

wo, 21 -=o, z>o 
dr 

fIbI 

a@(l,z) -__ + HB(l,z) = 0, z > 0 
ar 

(lc) 

B(r,O)= 1, Osr Il. (Id) 

The solution of this heat transfer problem is given by 
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where I,, and R,(r) are the eigenvalues and the eigenfunctions 
of the following eigenvalue problem 

+1*(1-r’)R(r)=o, 0~~51 (3a) 

dR(O)=O 
dr ’ 

fl(l) 
dr + HR(l) = O. 

(3b) 

It can be readily shown that the local Nusselt number, Nu, is 
given by 

2r.A 
2 f C,R,(l)e-“:z/2 

Nu,E----= n=0 

k $a($ - ~)C.RJl)e-‘:‘;” (4) 
” 

For the case of constant wall heat flux, qw, the boundary 
condition (lc) in the above heat transfer problem should be 
modified accordingly; but the eigenvalue problem (3) is 
applicable by settingH = 0. The local Nusselt number for the 
case of constant wall heat flux takes the form 

Clearly, the local Nusselt number can readily be computed 
from equations (4) and (5) if the eigenvalues I, and the 
coefficients C, R,( 1) are available for a given value of the Biot 
number, H, including the well known special case of H = 0. 
However, one needs to solve the eigenvalue problem (3) to 
determine the eigenvalues and the eigenfunctions. Although 

2x 
El=&--, 

3 

e2=r&--. 
3 

For the special case of H-P a! (i.e. isothermal wall), 
equation (7b) reduces to (l/w) -P 0, and for higher values of 
K’s equation (7~) is approximated by er E nn and equation 
(7a) simplifies to 

K = n + 2 + &[0.1237871 + jln(nK)] for H + CC (8) 

The coefficients C,R,(l) appearing in equations (4) and (5) 
can be determined from 

C,R,(l) = ~5’3 

$0.1237871 + Bh(nK)] cos El - sin .sr 

B D 

where 

cos&2+WCOS&1+-+- 
2K 2nK2 

for H < 10 (9a) 

B = [ - 0.1945227 + /7In(lrK)](sin 62 + osin E,) 

+ 0.4244131 sin e2, (9b) 

D = {-/l + go.1237871 + pin (nK)]} (cos c2 + wcos E,) 

- +[0.1237871 + pln (nK)] cos Ed, (SC) 

- 0.27499 for H = 0 
A= 

+ 0.274998 for H # 0 
(94 

and from 

C.R,(l)=l (’ 

sm e2 - a sin Ed) - & CO.1237871 + Bin (xK)] (cos E2 - a cos el) 

ZK B D 
COSE2 +WCOSE1 +--+- 

2K 2sK2 

for H 2 10 (lOa) 

such problems can be solved numerically [Z], the de- 
termination of the higher eigenvalues by purely numerical 
scheme becomes very difficult. Therefore, some asymptotic 
expressions have also been presented in [2]. 

Here we present highly accurate asymptotic expressions for 
the determination of the eigenvalues, I,, and the coefficients, 
C,R,(l), which are valid over the entire range of Biot number. 
We used the matched asymptotic expansion technique to 
obtain the solutions. Such a technique has been used 
previously by, for example, Shibani and &isik [3] to develop 
asymptotic expressions for the eigenvalues associated with 
the thermal entry region heat transfer subjected to the 
boundary condition of the first kind. 

The eigenvalues I, can be determined from 

I,=4K (6) 

where K is the solution of the transcendental equation 

K=.+;(l+=) 

+ g [0.1237871 + /I ln(nK)] ~cos~~lcos “‘1, (7a) 

H - 0.5 
w = 0.4319535 

K2’3 ’ Vb, 

where 

0.2159767 
a=-KG- (lob) 

and B and D are defined by equations (9b) and (SC) 
respectively. 

In the foregoing relations, the values of /I are determined by 
equating the last (i.e. 12th) exact eigenvalue or the coefficient, 
C, R,( 1 ), with the asymptotic ones. We present in Table 1 the 
values of j7, for different values of H, determined by equating 
the eigenvalues for lower values of H’s (i.e. H < lo), and 
equating the coefficients for the higher values of H (i.e. H 
2 10). This procedure yielded better results. 

In equations (9d) and (1Oa) one can even neglect the term in 
the denominator that contains (1/K2) with little effect in the 
results. 

Table 1. Values of B 

H B H B 

0 - 0.026597 5 - 0.200748 
0.1 - 0.039567 10 - 0.085227 
0.5 - 0.082274 50 - 0.067512 
1.0 - 0.124408 100 - 0.055986 
2.0 - 0.179048 
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RESULTS 

To illustrate the accuracy of the foregoing expressions for 
the determination of the eigenvalues i, and the coefficients, 
C,&(l), we present in Table 2 a comparison of the results 
obtained from our asymptotic expressions (6), (9) and (lo), 
with those obtained from the exact solution of the eigenvalue 
problem (3) by employing the procedure described in [4]. 
Also included in this table are the results calculated from the 
asymptotic expressions given by Hsu [2] and [S] for the 
boundary conditions of the third and second kind at the wall. 
Clearly, the analytical expressions given in this paper can 
predict the eigenvalues and the coefficients over the entire 
spectrum of eigenvalues for all values of the Biot number very 
close to the exact results. 
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Table 2. The eigenvalues and coefficients 

H 

0 

%I CuRn(l) 

n Exact Present Hsu [51 Exact Present Hsu 151 

1 5.06750 4.97681 5.33333 -0.19872 -0.21091 -0.14748 _ 

2 9.15761 9.12198 9.33333 -0.06926 -0.07034 -0.05803 
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